EC3 / Bases de données - SQL

Master 2 - Semestre 3

INTRODUCTION

PRÉSENTATION

Fabien Pageot, Geospatial Engineer chez PUR

Contact : fabien.pageot@gmail.com

Site du cours : https://fabienpgt.github.io/cy_bdd_sql/

PROGRAMME PÉDAGOGIQUE

Séance 1	Mardi 9 septembre, 10h30 - 12h30	Concepts Clés
Séance 2	Mardi 16 septembre, 10h30 - 12h30	Modélisation Conceptuelle (MCD)
Séance 3	Mardi 23 septembre, 10h30 - 12h30	Du MCD au Modèle Logique (MLD)
Séance 4	Mardi 30 septembre, 10h30 - 12h30	Passage au SQL + Introduction à PostgreSQL et DBeaver
Séance 5	Mardi 14 octobre, 8h30 - 12h30	SQL - Requête simple et Jointure
Séance 6	Mardi 21 octobre, 10h30 - 12h30	SQL - Requêtes imbriquées
Séance 7	Mardi 4 novembre, 10h30 à 20h30	SQL - Agrégation de données
Séance 8	Mardi de 18 novembre, 10h30 - 12h30	Révisions
Séance 9	Mardi 25 Novembre, 10h30 - 12h30	Examen Final

MODALITÉS D'ÉVALUATION

- Devoir maison (30 %): Exercice de modélisation conceptuelle, passage au modèle logique et traduction en SQL.
- Examen final (70 %): Épreuve pratique : modélisation et requêtage d'un jeu de données.

COURS 1 - CONCEPTS CLÉS

LES TABLEURS

	Α	В	С	D	E	F	G	Н	1
1	Nom client	Adresse client	N° commande	Date commande	Produit	Quantité	Prix unitaire (€)	Mode de paiement	Statut livraison
2	Dupont Jean	12 rue de Paris, Lyon	CMD001	01/09/2025	Pomme	10	1,2	СВ	Livré
3	Dupon J.	12 rue Paris, Lyon	CMD001	01/09/2025	Poire	5	1,5	СВ	Livré
4	Martin Sophie	4 pl. Bellecour, Lyon	CMD002	01/09/2025	Banane	3	2,4	Virement	En préparation
5	Martine Sophie	4 place Bellecour, Lion	CMD002	01/09/2025	Pomme	20	1,2	Virement	En préparation
6	Nguyen Paul	85 av Jean Jaures, Marseille	CMD003	02/09/2025	Poire	15	1,5	СВ	Livré
7	Dupuis Clara	14 rue Victor Hugeaux, Bordeaux	CMD004	02/09/2025	Pêche	4	2,9	Espèces	Annulé
8	Durand Louis	2 impasse des Lillas, Nantes	CMD005	03/09/2025	Jus	10	3,8	СВ	Livré
9	Petit Anne	11 rue Centrale, Toulouse	CMD006	04/09/2025	Banane	2	2,4	СВ	En préparation
10	Garcia Maria	30 rue Natioanle, Lille	CMD007	05/09/2025	Pomme	12	1,2	СВ	Livré
11	Bernard Allain	7 chemin Vert, Rénnes	CMD008	05/09/2025	Poire	5	1,5	Espèces	En préparation

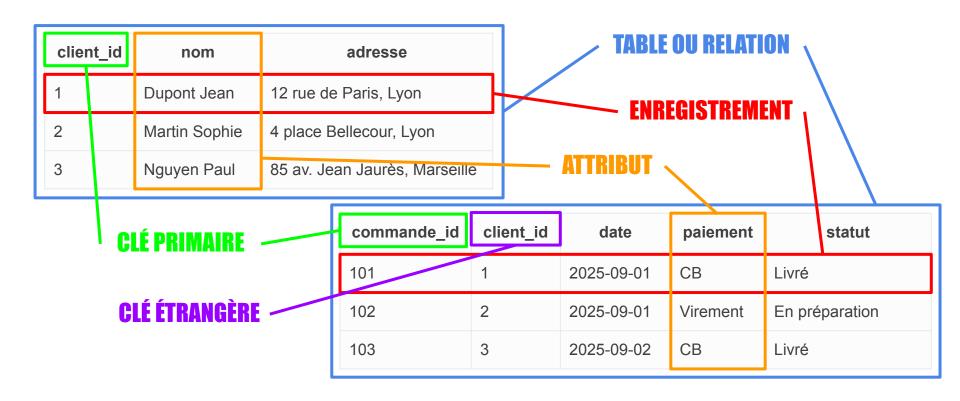
- Redondance
- Difficulté de mise à jour
- Incohérences
- Pas de structure claire

- Pas de clés primaires/étrangères
- Pas de gestion fine des accès
- Pas de vraie gouvernance

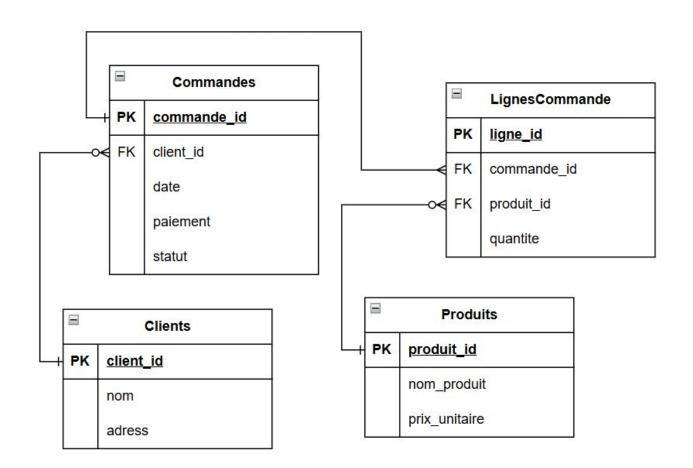
QU'EST CE QU'UNE BASE DE DONNÉES ?

Organisation logique et durable d'informations

Permet de :

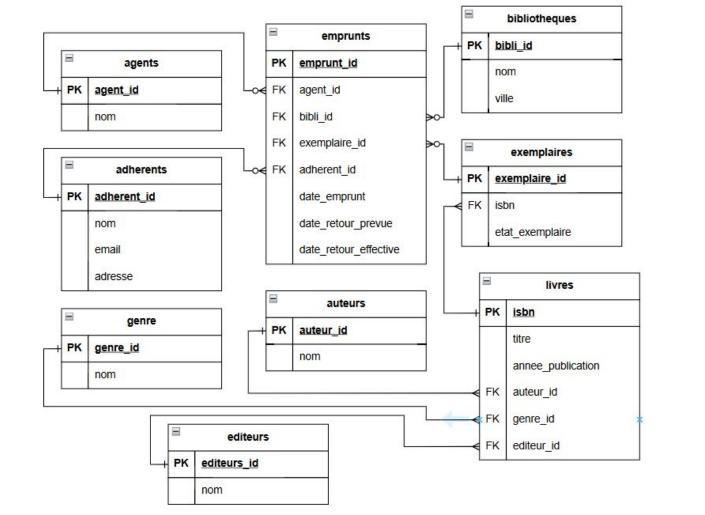

- Stocker
- Retrouver
- Mettre à jour
- Partager
- Protéger

Imposent un schéma et des contraintes


Gèrent les accès multiples et gros volumes

LES BASES DE DONNÉES RELATIONNELLES

EXEMPLE DE SCHÉMA D'UNE BASE DE DONNÉES RELATIONNELLES


EXERCICE

Transformer un tableur en plusieurs tables

Objectif: transformer un fichier Excel « plat » en plusieurs tables relationnelles.

Étapes attendues

- 1. Identifier les entités principales
- 2. Créer une table pour chaque entité avec une clé primaire (PK).
- 3. (Bonus) Déterminer les clés étrangères (FK) permettant de relier les tables.

QU'EST-CE QUE QU'UN SGBD?

Système de Gestion de Base de Données (SGBD)

- Moteur qui fait tourner la base
- Crée, maintient, exécute les requêtes
- Gère : sécurité, accès, logs, concurrence

Exemples de SGBD:

- Relationnels : PostgreSQL, MySQL, Oracle
- NoSQL: MongoDB, Redis, Neo4j

SGBD vs SGBDR:

- SGBD est le **terme générique** pour désigner le moteur.
- SGBDR (Système de Gestion de Base de Données Relationnelles) désigne un SGBD qui implémente le modèle relationnel

L'APPROCHE ACID

ACID est un acronyme qui désigne **quatre propriétés fondamentales** d'une transaction

Une **transaction** correspond à une **opération sur la base de données** : ajout d'un enregistrement, mise à jour, suppression, etc.

- Atomicité : une transaction est tout ou rien
- Cohérence : respecte toujours les contraintes d'intégrité
- **Isolation**: les transactions ne s'influencent pas entre elles
- **Durabilité** : les changements validés sont permanents, même après une panne

LE LANGAGE SQL

Le SQL (Structured Query Language) est un langage déclaratif et standardisé.

Il permet de :

- **décrire** la structure d'une base relationnelle
- manipuler les données
- **interroger** les données
- **gérer** les transactions
- contrôler les accès

On distingue notamment trois grandes familles de commandes SQL permettant :

- La définition des données (DDL)
- La manipulation des données (DML)
- Le requêtage de données (DQL)

Définir la structure (DDL)

Le **Data Definition Language** sert à créer/faire évoluer tables, contraintes, index, vues et schémas.

Manipuler les données (DML)

Le **Data Manipulation Language** couvre l'insertion, la mise à jour et la suppression.

```
INSERT INTO Clients (nom, adresse)
VALUES ('Alice Dupont', '10 rue Victor Hugo, Paris');

UPDATE Clients
SET adresse = '15 rue de Lyon, Paris'
WHERE client_id = 1;

DELETE FROM Clients
WHERE client_id = 999;
```

Interroger l'information (DQL)

Le **Data Query Language** s'articule autour de SELECT. On filtre, on joint, on agrège, on ordonne, on regroupe.

```
SELECT p.produit_id, p.nom_produit, SUM(lc.quantite) AS qte_vendue
FROM LignesCommande lc

JOIN Commandes c ON c.commande_id = lc.commande_id

JOIN Produits p ON p.produit_id = lc.produit_id

WHERE date_trunc('month', c.date) = date_trunc('month', CURRENT_DATE)

GROUP BY p.produit_id, p.nom_produit

ORDER BY qte_vendue DESC

LIMIT 5;
```

COURS 2 - De la modélisation à la conception d'une base de données

Partie 1 : Le Modèle Conceptuel de Données (MCD)

LA MÉTHODE MERISE

Concevoir une base de données = comme construire une maison

Nécessité de plans avant de coder

Les plans = la modélisation

Méthodologie Merise

- **MCD**: Modèle Conceptuel → Représentation indépendante de la technique
- **MLD**: Modèle Logique → Traduction vers le modèle relationnel
- **MPD**: Modèle Physique → Passage au SQL concret

Exemple fil rouge : Le Festival Jazz de la Villette

LES RÈGLES DE GESTION MÉTIER

Point de départ : comprendre le besoin métier

Formalisation en règles de gestion

Deux sources possibles :

- Utilisateurs → besoins exprimés
- Concepteur → analyse / entretiens

Questions clés :

- Quelles infos conserver ?
- Quels objets relier ?
- Quelles contraintes respecter?

LES RÈGLES DE GESTION MÉTIER - Exemple du Festival

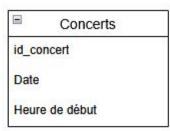
- Un **festivalier** peut assister à plusieurs **concerts**, et chaque **concert** peut accueillir plusieurs festivaliers.
- Un concert se déroule obligatoirement sur une seule scène, et chaque scène peut accueillir plusieurs concerts.
- Un artiste peut jouer dans plusieurs concerts, et chaque concert peut accueillir plusieurs artistes.
- Un membre du personnel peut travailler sur plusieurs concerts, et chaque concert mobilise plusieurs personnels.
- Chaque concert possède une date et une heure de début qui doivent être uniques pour ce concert.
- Un festivalier est identifié par son nom, prénom et adresse e-mail.
- Un artiste est identifié par son nom, son style musical et son pays.
- Un membre du personnel est identifié par son nom, prénom et fonction.

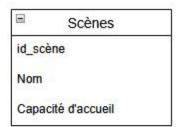
LE MODÈLE CONCEPTUELLE DE DONNÉES

Première étape de la modélisation

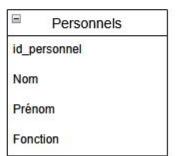
Objectif : Décrire les **objets** du monde réel et les **relations** qu'ils entretiennent entre eux

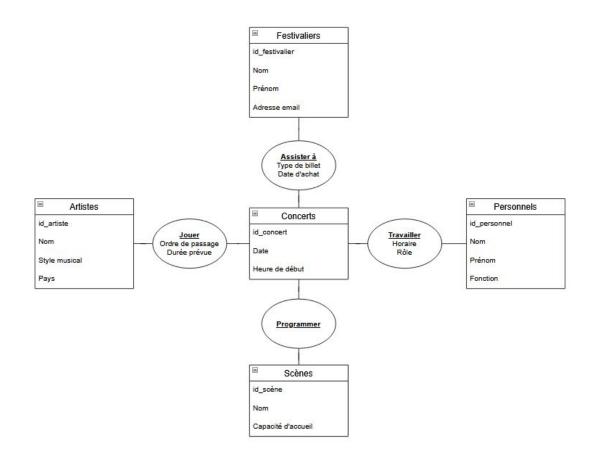
Deux notions fondamentales :


- Entités (objets du monde réel)
- Associations (liens entre entités)


LES ENTITÉS

Une entité est un ensemble homogène d'objets du monde réel.


Chaque objet de cet ensemble est appelé une **occurrence** de l'entité.

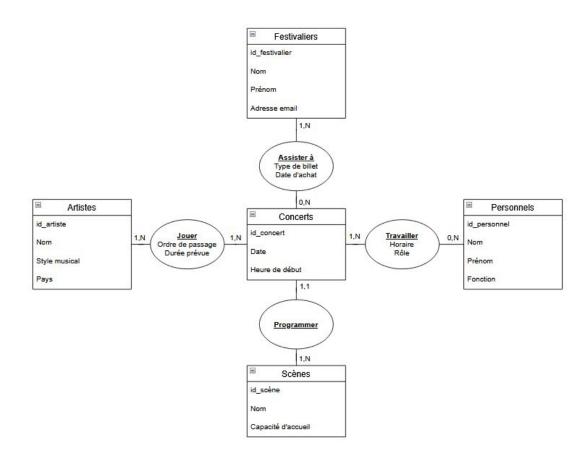


LES ASSOCIATIONS

Une **association** établit un lien sémantique entre deux ou plusieurs entités.

Elle se nomme avec un **verbe**, à la forme active ou à la forme passive

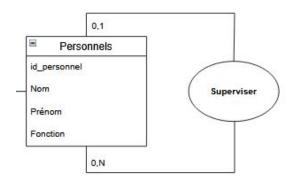
Une association peut posséder ses propres **attributs**.



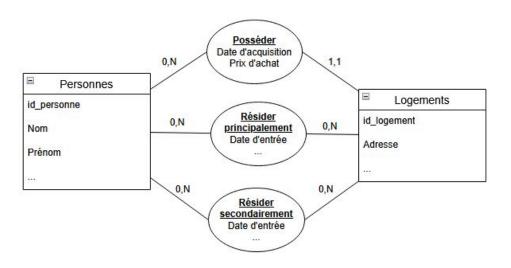
LES CARDINALITÉS

Les **cardinalités** précisent combien de fois une occurrence d'une entité peut participer à une association.

Elles se notent sous la forme (min, max).


- (0,1) → facultatif et unique
- (1,1) → obligatoire et unique
- (0,N) → facultatif et multiple
- (1,N) → obligatoire et multiple

CAS PARTICULIERS


Association Réflexive

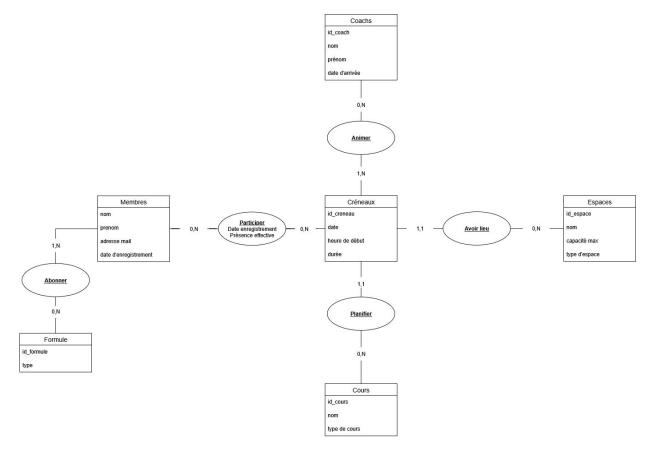
Une association reliée à elle-même. Généralement pour exprimer une relation hiérarchique

Association plurielle

Même paire d'entités reliée par plusieurs associations

EXERCICE

Les propriétaires d'une salle de sport souhaitent mieux gérer leurs activités quotidiennes : organisation des cours, gestion des coachs, suivi des membres et de leurs présences. Ils font donc appel à vous, en tant que consultants en modélisation de bases de données, pour concevoir le modèle conceptuel de données (MCD) de leur futur système d'information.


Règles de gestion métier fournies

- Une salle de sport propose plusieurs cours collectifs comme le yoga, le pilates, le crossfit ou encore des cours de self défense.
- Chaque Créneau d'un cours se déroule dans un espace dédié (salle de yoga, salle de musculation, espace extérieur, zone de tatami).
- Les créneaux d'un cours sont encadrés par des coach sportifs. On souhaite mémoriser leur nom, prénom et leur date d'arrivée dans le club.
- Les membres assistent aux créneaux d'un cours. Pour chaque membre, on enregistre : numéro d'adhésion, nom, prénom, adresse e-mail, date d'enregistrement et formule choisie (abonnement mensuel, annuel, cours individuels uniquement).
- Chaque cours est planifié sur un ou plusieurs créneaux horaires (date, heure de début, durée).
- On aimerait pouvoir savoir qui a participé réellement à un créneau (présence effective), ce qui peut différer des inscriptions prévues.

Règle de gestion supplémentaires

- Chaque créneau a lieu dans un seul espace, mais un espace peut accueillir plusieurs créneaux.
- Un créneau doit être encadré par au moins un coach, et peut être encadré par plusieurs coachs en même temps.
- Un cours peut être planifié sur plusieurs créneaux, mais chaque créneau correspond à un seul cours.
- Un coach peut encadrer plusieurs créneaux, mais peut aussi exister dans la base sans encadrer de cours (coach nouvellement recruté).
- Un cours peut être planifié sur plusieurs créneaux, mais chaque créneau correspond à un seul cours.
- Un membre peut s'inscrire à plusieurs créneaux, et un créneau peut accueillir plusieurs membres.
- Un créneau peut exister même sans inscriptions

EXERCICE - Proposition de Schéma

COURS 3 - De la modélisation à la conception d'une base de données

Partie 2 : Du Modèle Logique de Données (MLD) au Modèle Physique de Données (MPD)

LE MODÈLE LOGIQUE DE DONNÉES

Rappel

- Le MCD décrit les entités, attributs et associations du monde réel.
- Le MLD traduit ce modèle en tables relationnelles.
- Objectif : préparer le passage vers le SQL concret (MPD).

Le MLD permet de traduire le MCD en structure compréhensible par un SGBD.

Deux grandes missions :

- Transformer les entités et associations en tables
- Préparer le passage vers le SQL concret (MPD)

CONVERSION D'UNE ENTITÉ

- Chaque entité devient une table.
- Les attributs deviennent des colonnes.
- L'identifiant devient la clé primaire (PK).

Exemple

```
artistes(id_artiste, nom, style_musical, pays)
```

artistes

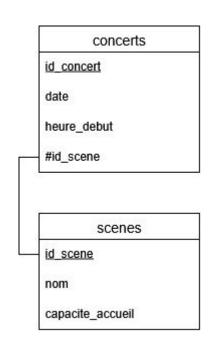
id_artiste

nom

style_musicale

pays

Conversion d'associations 0/1,1 - 0/1,N


Cardinalité max 1 d'un côté et N de l'autre.

Ajout d'une **clé étrangère** dans la table côté (0,1) ou (1,1).

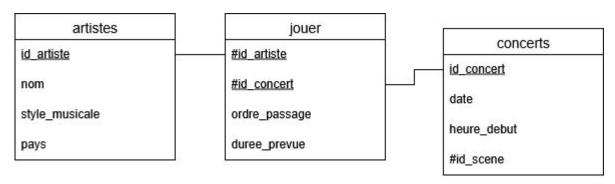
Exemple : Programmer (Concerts ↔ Scènes)

- Un concert est programmé sur une seule scène.
- Une scène accueille plusieurs concerts.

```
concerts(<u>id_concert</u>, date, heure_debut, #id_scene)
scenes(<u>id_scene</u>, nom, capacite_accueil)
```


Conversion d'associations (N – N)

Cardinalité N des deux côtés.

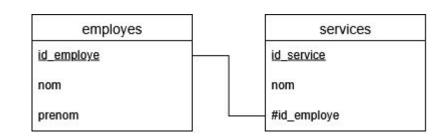

Création d'une nouvelle table associative.

PK = concaténation des clés primaires des deux entités.

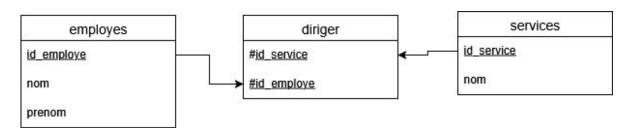
Les attributs supplémentaires deviennent des colonnes.

Exemple : Jouer (Artistes ← Concerts)

jouer(#id_artiste, #id_concert, ordre_passage, duree_prevue)

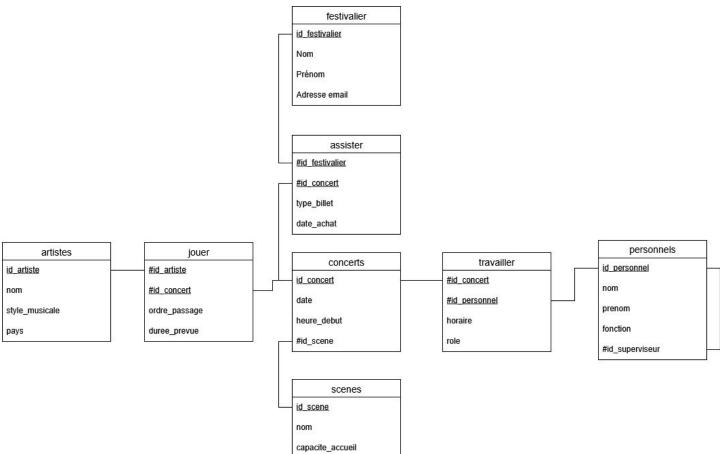

Conversion d'associations (1-1)

Deux options possibles :


- Ajouter une clé étrangère avec contrainte d'unicité.
- Créer une table associative spécifique.

Exemple : Diriger (Employés → Services)

Option 1 \rightarrow clé étrangère id_employe dans services.


Option 2 \rightarrow table diriger(#id_service, #id_employe).

Exemple complet: Festival

```
artistes(id_artiste, nom, style_musical, pays)
scenes(id_scene, nom, capacite_accueil)
concerts(id_concert, date_concert, heure_debut, #id_scene)
festivaliers(<u>id_festivalier</u>, nom, prenom, adresse_email)
personnels(id_personnel, nom, prenom, fonction, #id_superviseur)
jouer(#id_artiste, #id_concert, ordre_passage, duree_prevue)
assister(#id_festivalier, #id_concert, type_billet, date_achat)
travailler(#id_concert, #id_personnel, horaire, role)
```

Exemple complet: Festival

LE MODÈLE PHYSIQUE DE DONNÉES

Traduction concrète du **MLD** dans un **SGBD** particulier (PostgreSQL, MySQL, Oracle, SQL Server...).

Le MPD consiste à écrire les requêtes SQL qui créent les tables avec :

- Colonnes
- Types de données
- Contraintes

Les types de données et leur importance

Bien choisir un type de données permet de :

- Assurer la cohérence
- Optimiser la mémoire.
- Améliorer les performances.
- Renforcer la fiabilité

Les types de données les plus courants

Numériques : smallint, integer, bigint, numeric, real, double precision, serial

Texte: char(n), varchar(n), text

Temporels: date, time, timestamp, interval

Booléens : boolean

Spécialisés: uuid, json/jsonb, geometry

Bonnes pratiques de nommage SQL

Règles à respecter dans le cadre du cours :

- Nom de tables au pluriel (concerts, artistes, festivaliers)
- Colonnes au singulier (nom, date_concert, id_scene)
- Pas d'accents, espaces ou majuscules (snake_case)
- Clés primaires explicites (id_artiste, id_concert)
- Clés étrangères reprenant le nom référencé (id_scene dans concerts)

CREATE TABLE

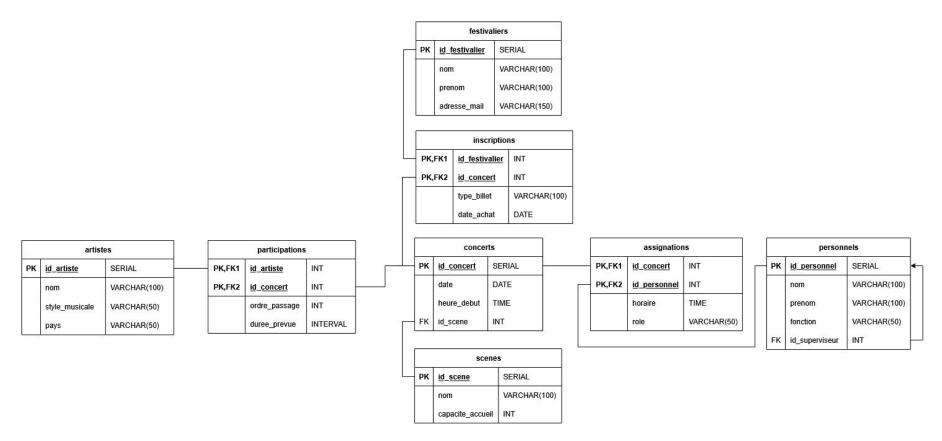
```
CREATE TABLE nom_table (
   nom_colonne type_donnee [contrainte],
   nom_colonne type_donnee [contrainte],
   ...
   [contraintes_table]
);
```

- nom_table : nom de la table
- nom_colonne : nom de chaque colonne
- type_donnee : choix du type
- contrainte : règle appliquée à la colonne
- contraintes_table : contraintes globales

Contraintes les plus courantes

PRIMARY KEY: identifie chaque ligne de manière unique

FOREIGN KEY: relation avec une autre table


NOT NULL: valeur obligatoire

UNIQUE: empêche les doublons

DEFAULT : valeur par défaut

CHECK: impose une condition (ex. capacite > 0)

Exemple du Festival

DEVOIR MAISON

Vous devez réaliser, à partir d'un **exemple concret** (tiré de votre travail, de votre alternance, de votre stage, ou d'un autre contexte professionnel ou personnel de votre choix), une démarche complète de **modélisation et mise en œuvre d'une base de données**.

Ce devoir a pour but de vérifier votre capacité à :

- recueillir les règles de gestion d'un métier,
- les traduire dans un modèle conceptuel de données (MCD),
- transformer ce modèle en modèle logique de données (MLD),
- produire le modèle physique de données (MPD),
- et enfin écrire les requêtes **SQL** de création des tables.